

VisageTracker Configuration Manual

version 8.6

Visage Technologies AB

www.visagetechnologies.com

2

Contents
1. Introduction 3

1.1. Standard configuration files 3

2. Customizing the tracker 4

2.1. Configuration parameters 4

2.2. General configuration and setup guidelines 11

2.2.1. Optimizing tracking performance 11

2.2.2. Estimating the camera focus 11

2.2.3. Configuration and data files 11

2.3. The 3D models used in tracking 12

2.3.1. The Candide model 12

2.3.2. The jk_300 model 14

2.3.2.1. The jk_300_wEars model 15

2.3.3. File formats for 3D models 16

2.4. Action Units 17

3

1. Introduction
This manual is meant for users who wish to take advantage of advanced functionalities that can be obtained from the

tracker changing its parameters.

The tracker is fully configurable through an extensive set of parameters which can be easily changed through

configuration files or programmatically using VisageConfiguration class.

Easily manageable configuration files are used for tracker initialization. Each configuration file fully defines the tracker

operation, in effect customizing the tracker for a particular application.

The configuration file is loaded when a new tracker is initialized, but it is also possible to change the configuration file

between tracking sessions using VisageTracker::setTrackerConfiguration(). Furthermore, the configuration files in the

same format are also used for facial features detection though in this case only a subset of configuration parameters is

used. At the moment, Face Detector.cfg is used and it is not possible to change configuration name for facial features

detection.

The VisageConfiguration class is used to change, apply, load and save configuration parameters in run-time. The current

tracker configuration can be obtained by calling VisageTracker::getTrackerConfiguration(). The class exposes getter and

setter functions for each configuration parameter allowing the change of the particular parameter. Any change within the

configuration can be applied back to the tracker calling the function VisageTracker::setTrackerConfiguration() and will be

visible in the next tracking session. More about the class and its functions can be found in the class documentation.

1.1. Standard configuration files

visage|SDK comes with several standard configuration files aimed at common usage scenarios.

Table 1. provides an overview of all available configurations.

Table 1. Standard configuration files

Configuration file name Overview

Head Tracker.cfg Optimized for high performance head pose tracking.

Facial Features Tracker - Ultra.cfg

Facial features tracker optimized for real time operation from camera or video files

on the most powerful devices such as newer computers, or mobile devices such as

iPhone X/Samsung Galaxy S9.

Facial Features Tracker - High.cfg

Facial features tracker optimized for real time operation from camera or video files

on most computers and mobile devices such as iPhone 6/Samsung Galaxy S5 or

better.

Facial Features Tracker - Low.cfg

Facial features tracker optimized for real time operation from camera or video files

on low performance mobile devices such as iPhone4S. Tracks head pose, mouth,

eyebrows and eye motion.

Face Detector.cfg Used in face detection.

4

2. Customizing the tracker
Information in this chapter allows users to create own application-specific tracker configurations.

2.1. Configuration parameters

The following table provides the detailed description of parameters defined in the configuration file and their usage.

Some parameters are available only on specific platform marked in table as "WIN" for Windows, "IOS" for iOS, "AND" for

Android, "MAC" for macOS, "LIN" for Linux and "HTML5" for HTML5. Furthermore, the labels "TRACKER" and

"DETECTOR" in the table indicate whether the parameter influences VisageTracker or VisageFeaturesDetector.

Table 2. Configuration parameters

Parameter name Description

Parameters controlling tracker initialization and recovery

min_face_scale

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER]

This value controls the lower limit for face scale search range used during

initialization and recovery. It is defined as decimal fraction [0.0 - 1.0] of the input

image size, where image size is defined as smaller of the image's width and

height. For example, if min_face_scale is set to 0.1 and image dimensions are

800x600, smallest face that will be searched for will be 0.1 x min (800, 600) =

60px.

max_face_scale

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER]

This value controls the upper limit of face scale search range used during

initialization and recovery. It is defined as decimal fraction [0.0 - 1.0] of the input

image size, where image size is defined as smaller of the image's width and

height. For example, if max_face_scale is set to 0.8 and image dimensions are

800x600, largest face that will be searched for will be 0.8 x min (800, 600) =

480px.

face_detector_sensitivity

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

This value controls the face detector sensitivity (TPR) for

VisageFeaturesDetector detections and VisageTracker initializations.

Valid values for this parameter are from 0 to 1. Setting the parameter to 1 will

ensure maximal achievable true positive rate, but it will result with large amounts

of false positive detections. Setting it closer to 0 will ensure lower amounts of

false positives, but also lower number of true positive detections.

recovery_timeout

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER]

This value is used when the tracker loses the face and cannot detect any face in

the frame. This value tells the tracker how long it should wait before considering

that the current user is gone and initializing the full re-initialization procedure. If

the face is detected before this time elapses, the tracker considers that it is the

same person and recovers, i.e. continues tracking it using the previous settings.

The time is expressed in milliseconds.

Parameters controlling the smoothing filter

smoothing_factors

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER]

The tracker can apply a smoothing filter to the tracking results to reduce the

inevitable tracking noise.

Smoothing is preformed using multiple filters which range from the strongest

filter (maximal smoothing, longest delay) to weakest (highest response, less

delay). An adaptive combination of filters is used, maximizing stability when the

face is still while reducing delay when the face moves. Still, smoothing inevitably

introduces some delay so it should be used sparingly.

Smoothing factors will affect the weight that is given to each filter, with higher

values giving higher weight to the strongest filter.

Values can range between 0 and 10. The value 0 provides minimal smoothing

and highest response (lowest delay). The value 10 provides maximal smoothing

and lowest response (longest delay). Negative value disables smoothing

completely for specific group. Our recommended range for all groups is from 0.5

to 2.0.

5

Parameter name Description

Smoothing is applied only on the detected feature points (2D points) but it also

affects the 3D data indirectly.

Smoothing factors are set separately for the following groups of tracking results,

one factor value for each group:

Eyebrows:

Applies smoothing to parameters that represent eyebrow movement.

The following members of FaceData::featurePoints2D are directly affected by

this factor: group 4, feature points 1 to 6; group 14, feature points 1 to 4.

Mouth:

Applies smoothing to parameters that represent mouth movement.

The following members of FaceData::featurePoints2D are directly affected by

this factor: group 2, feature points 2 to 9; group 8, feature points 1 to 10.

Pupils:

Applies smoothing to parameters that represent pupil movement (indirectly

affects the responsiveness of gaze direction estimation).

The following members of FaceData::featurePoints2D are directly affected by

this factor: group 3, feature points 5 and 6.

Eyelids:

Applies smoothing to parameters that represent eyelid region movement

(indirectly affects responsiveness of eye closure estimation).

The following members of FaceData::featurePoints2D are directly affected by

this factor: group 3, all feature points except 5 and 6 (pupils); group 12, feature

points 5 to 12.

6

Parameter name Description

Nose:

Applies smoothing to parameters that represent nose movement.

The following members of FaceData::featurePoints2D are directly affected by

this factor: group 9, feature points 3 to 5 and feature point 15.

Visible face contour and chin:

Applies smoothing to parameters that represent contour of the face and chin.

The following members of FaceData::featurePoints2D are directly affected by

this factor: group 13, feature points 1 to 17 and group 2, feature point 1.

Visible nose contour:

Applies smoothing to parameters that represent contour of the nose.

The following members of FaceData::featurePoints2D are directly affected by

this factor: group 14, feature points 21 to 25.

7

Parameter name Description

Ears:

Applies smoothing to parameters that represent ears movement.

The following members of FaceData::featurePoints2D are directly affected by

this factor: group 10, feature points 1 to 24.

Screen space gaze:

Applies smoothing to parameters that represent screen space gaze position.

The following members of FaceData::gazeData are directly affected by this

factor: x, y.

Data parameters and paths

bdts_data_path

[WIN, IOS, AND, MAC, LIN]

[TRACKER]

Path to the folder containing data files required by tracker. It is relative to the

location of the configuration file. In the current distribution these files are

contained in the folder Samples/data/bdtsdata.

NOTE: For HTML5 bdts_data_path is "bdtsdata" and it cannot be changed.

camera_focus

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Focal length of a pinhole camera model used as approximation for the camera

used to capture the video in which tracking is performed. The value is defined as

distance from the camera (pinhole) to an imaginary projection plane where the

smaller dimension of the projection plane is defined as 2, and the other

dimension is defined by the input image aspect ratio. Thus, for example, for a

landscape input image with aspect ratio of 1.33 the imaginary projection plane

has height 2 and width 2.66. See section 2.2.2. "Estimating the camera focus"

for further details.

Parameters related to the 3D face fitting and 3D models used

Because the tracker and detector yield only 2D points, visage|SDK uses 3D facial models to estimate the 3D

information such as head pose, 3D facial points, Action Units or full 3D facial mesh. Depending on application

requirements, up to three different models may be used: one for head pose estimation, one for Action Units estimation

and one for 3D mesh fitting. For performance/data size/memory footprint reasons, it is recommended to use only the

models corresponding to the functionality required by the application - for example, if the application requires only 3D

head pose but not the 3D mesh nor action units, use only one model and disable others (note that it is possible to

disable Action Units and 3D model fitting within the application – see VisageTracker::setTrackerConfiguration).

Furthermore, models can be customized or completely replaced by custom-built ones if so required by specific

applications - see section 2.3 for details. The following parameters are used to specify which models are used.

pose_fitting_model

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

File name of the 3D model used to estimate the 3D head pose (returned in

FaceData::faceTranslation and FaceData::faceRotation). This model is required

for the functioning of the tracker and should not be disabled; it is recommended

to use the default one as set in the tracking configurations shipped in

visage|SDK. The file name may contain a path, and it must be relative to the

location of the configuration file.

In face detector configurations, it is possible to disable this model by setting this

parameter to "none" or simply removing it from the configuration; this will yield a

small gain in data size, memory footprint and performance.

NOTE: HTML5 version does not support relative paths. Provide only name of

model file (e.g. jk_300.wfm).

pose_fitting_fdp Name of the MPEG-4 feature Points Definition (FDP) file corresponding to the

3D model file specified by the pose_fitting_model parameter. The file name may

8

Parameter name Description

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

contain a path, and it must be relative to the location of the configuration file. For

more details, please refer to the section on the 3D Model.

NOTE: HTML5 version does not support relative paths. Provide only name of

model file (e.g. jk_300.fdp).

pose_fitting_au_use

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Indicates which Action Units from the 3D model file specified by the

pose_fitting_model parameter are actually active in tracking; the ones set to 1

are active and the ones set to 0 are not used. The comment line after the

numbers is included for easier identification of Action Units.

pose_fitting_su_use

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Indicates which Shape Units from the 3D model file specified by the

pose_fitting_model parameter are actually active in tracking; the ones set to 1

are active and the ones set to 0 are not used.

pose_fitting_pose_sensitivity

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Sensitivity values for rotation (3 values) and translation (3 values) for the 3D

model file specified by the pose_fitting_model parameter. A higher value results

in faster reaction of the tracker but also more sensitivity to noise. The comment

line after the numbers is included for easier identification of the pose

parameters.

pose_fitting_au_sensitivity

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Sensitivity values for Action Units (one for each AU) for the 3D model file

specified by the pose_fitting_model parameter. A higher value results in faster

reaction of the tracker but also more sensitivity to noise. The comment line after

the numbers is included for easier identification of Action Units. For further

details please refer to the section on Action Units and to the section on the 3D

Model.

pose_fitting_su_sensitivity

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Sensitivity values for Shape Units for the 3D model file specified by the

pose_fitting_model parameter. A higher value results in faster reaction of the

tracker but also more sensitivity to noise.

au_fitting_model

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

File name of the 3D model used to estimate the Action Units (returned in

FaceData::faceTranslation and FaceData::faceRotation); for more details on

Action Units, their customization, and the 3D models in general, please refer to

the section on the 3D Model. If Action Units are not required by an application, it

is recommended to disable this function by setting this parameter to "none" or

simply removing it from the configuration; this will yield a small gain in data size,

memory footprint and performance.

NOTE: HTML5 version does not support relative paths. Provide only name of

model file (e.g. candide3.wfm).

au_fitting_fdp

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Name of the MPEG-4 feature Points Definition (FDP) file corresponding to the

3D model file specified by the au_fitting_model parameter. The file name may

contain a path, and it must be relative to the location of the configuration file. For

more details, please refer to the section on the 3D Model.

NOTE: HTML5 version does not support relative paths. Provide only name of

model file. (e.g. candide3.fdp).

au_fitting_au_use

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Indicates which Action Units from the 3D model file specified by the

au_fitting_model parameter are actually active in tracking; the ones set to 1 are

active and the ones set to 0 are not used. The comment line after the numbers

is included for easier identification of Action Units. For further details please

refer to the section on Action Units and to the section on the 3D Model.

au_fitting_su_use

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Indicates which Shape Units from the 3D model file specified by the

au_fitting_model parameter are actually active in tracking; the ones set to 1 are

active and the ones set to 0 are not used.

au_fitting_au_sensitivity

[WIN, IOS, AND, MAC, HTML5,

LIN]

Sensitivity values for Action Units (one for each AU) for the 3D model file

specified by the au_fitting_model parameter. A higher value results in faster

reaction of the tracker but also more sensitivity to noise. The comment line after

9

Parameter name Description

[TRACKER, DETECTOR] the numbers is included for easier identification of Action Units. For further

details please refer to the section on Action Units and to the section on the 3D

Model.

au_fitting_su_sensitivity

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Sensitivity values for Shape Units for the 3D model file specified by the

au_fitting_model parameter. A higher value results in faster reaction of the

tracker but also more sensitivity to noise.

au_names

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Contains list of action units names. Exclusive to the au_fitting_model.

mesh_fitting_model

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

File name of the 3D model used to fit a fine 3D mesh to the face (returned in

FaceData::faceTranslation and FaceData::faceRotation); for more details on 3D

models and their customization, please refer to the section on the 3D Model. If

an application does not require the fine 3D facial mesh, it is recommended to

disable this function by setting this parameter to "none" or simply removing it

from the configuration; this will yield a small gain in data size, memory footprint

and performance.

NOTE: HTML5 version does not support relative paths. Provide only name of

model file. (e.g. candide3.wfm).

mesh_fitting_fdp

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Name of the MPEG-4 feature Points Definition (FDP) file corresponding to the

3D model file specified by the mesh_fitting_model parameter. The file name

may contain a path, and it must be relative to the location of the configuration

file. For more details, please refer to the section on the 3D Model.

NOTE: HTML5 version does not support relative paths. Provide only name of

model file. (e.g. candide3.fdp).

mesh_fitting_au_use

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Indicates which Action Units from the 3D model file specified by the

mesh_fitting_model parameter are actually active in tracking; the ones set to 1

are active and the ones set to 0 are not used. The comment line after the

numbers is included for easier identification of Action Units.

mesh_fitting_su_use

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Indicates which Shape Units from the 3D model file specified by the

mesh_fitting_model parameter are actually active in tracking; the ones set to 1

are active and the ones set to 0 are not used.

mesh_fitting_au_sensitivity

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Sensitivity values for Action Units (one for each AU) for the 3D model file

specified by the mesh_fitting_model parameter. A higher value results in faster

reaction of the tracker but also more sensitivity to noise. The comment line after

the numbers is included for easier identification of Action Units. For further

details please refer to the section on Action Units and to the section on the 3D

Model.

mesh_fitting_su_sensitivity

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Sensitivity values for Shape Units for the 3D model file specified by the

mesh_fitting_model parameter. A higher value results in faster reaction of the

tracker but also more sensitivity to noise.

Parameter controlling the processing of eyes.

process_eyes

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Bit-flag parameter that controls gaze vector calculation and pupil points

refinement. If the parameter is set to 0, both functionalities will be disabled. First

bit controls the gaze calculations and second bit controls the pupil point

refinement, so setting the parameter to 1 enables the gaze calculations, setting

it to 2 enables the pupil refinement and setting it to 3 enables both

functionalities. Both functionalities are enabled by default (process_eyes 3).

Parameter controlling the ears refinement.

10

Parameter name Description

refine_ears

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Boolean parameter that controls ears refinement. If the parameter is set to 0,

then ears tracking will be disabled. If the parameter is set to 1, then ears

tracking will be enabled.

Important prerequisite for ears refinement is provided mesh_fitting_model model

with defined ears vertices and mesh_fitting_fdp file that includes definition for

group 10.

Exceptionally, if mesh_fitting_model is not provided, the model with defined ears

vertices, should be assigned to the pose_fitting_model instead.

If pose_fitting_model is not provided, then system will behave as if ears

refinement is turned off.

Precision/performance trade-off parameters

Other than the parameters listed here, there are a few more parameters that affect performance – please see section

2.2.1.

use_vnn

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER]

This parameter turns on/off experimental tracking algorithm. Default value is set

to 0. The experimental algorithm minimizes jitter, increases tracking accuracy

and robustness but reduces tracking performance.

This algorithm requires set of data files (with .bin and .xml extension) that must

be placed in a folder structure "NN/vnn" relative to the bdts_data_path

parameter.

If the default tracking algorithm is used the required data (with .bin and .xml

extension) has to be placed in "NN" folder relative to the bdts_data_path

parameter.

NOTE: Does not apply to HTML5 version where all required data files are

bundled in visageSDK.data and additional visageVNNData.data files.

lbf_stage_modifier

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER]

Reduces total number of stages by this value. Default value is 0. There are

maximum 5 stages. For example, setting the value to 1 will skip the final stage

during detection, 2 will skip 2 final stages, etc. Increasing the value of this

parameter increases performance but reduces feature points precision.

lbf_nperturb

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Number of perturbations for each feature points detection. Default value is 4.

Reducing the number of perturbations increases performance but reduces

feature points precision.

lbf_nperturb_threads

[TRACKER]

Number of threads used for perturbations. Default value is 1. If lbf_nperturb

parameter is set higher than 1, on multi-core processors, increasing the number

of threads can increase performance, since each thread (each perturbation)

may execute on a separate core.

Limits (min, max) on tracker outputs.

When any of the results goes out of the specified range, full or partial re-initialization is initiated.

rotation_limit

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Limit values for the rotations around the x, y and z axis.

translation_limit

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Limit values for the translations in x, y, and z directions.

action_unit_limit

[WIN, IOS, AND, MAC, HTML5,

LIN]

[TRACKER, DETECTOR]

Limit values for action units. Please refer to the section on Action Units for

further details regarding Action Units.

11

2.2. General configuration and setup guidelines

These general guidelines may help to obtain optimal tracking results:

 Determine camera_focus parameter (see section 2.2.2).

 The room and the face should be well lit. User can experiment with different types of lighting (indirect daylight is

usually the best, neon lights the worst).

 User should disable automatic adjustment of the camera settings by the driver like gain, exposure, white

balance and similar and set them manually, if possible, depending on the camera used and lighting conditions.

2.2.1. Optimizing tracking performance

This section summarizes the configuration parameters that most affect the tracking performance.

Table 3. Parameters effect on performance

PARAMETERS EFFECT ON PERFORMANCE

use_vnn Turning on this parameter decreases performance but significantly increases

accuracy and robustness and reduces jitter.

lbf_stage_modifier Increasing this parameter improves performance but may reduce accuracy.

lbf_nperturb Increasing this parameter decreases performance but also reduces tracking

noise.

process_eyes Disabling this increases performance, but reduces pupil points detection accuracy

and disables gaze vector calculation.

au_model Disabling this increases performance.

mesh_model Disabling this increases performance.

A detailed explanation of the parameters can be found in the section 2.1.

Other than these parameters, the resolution of input image also affects performance.

2.2.2. Estimating the camera focus

The camera_focus parameter can be estimated by using the tool in the following way:

1. Print the provided chessboard pattern (chessboard.png) on a sheet of paper.

2. Fix the sheet of paper with chessboard pattern from the previous step on a flat surface.

3. Take 10 to 20 images of the chessboard pattern from different angles and distances with the camera that is to

be calibrated taking care that the whole chessboard pattern is visible without minding the background.

4. Run CameraCalibration tool and select all the images taken in the previous step.

5. After calibration is done the tool will output camera focal length which can be input as camera focus parameter

in tracker configuration file.

2.2.3. Configuration and data files

Other than the configuration files (.cfg), the tracker requires several other data files some of them also user-

customizable, these files are defined in the configuration file.

The following example shows one possible file structure for a tracking application on Windows and relevant path settings

in config file.

12

File structure:

(...)\TrackerApp\Resources\Facial Features Tracker – Ultra.cfg

(...)\TrackerApp\Resources\Facial Features Tracker – High.cfg

(...)\TrackerApp\Resources\Facial Features Tracker – Low.cfg

(...)\TrackerApp\Resources\candide3.wfm

(...)\TrackerApp\Resources\candide3.fdp

(...)\TrackerApp\Resources\jk_300.wfm

(...)\TrackerApp\Resources\jk_300.fdp

(...)\TrackerApp\Resources\jk_300_wEars.wfm

(...)\TrackerApp\Resources\jk_300_wEars.fdp

(...)\TrackerApp\Resources\bdtsdata\FF\ff.dat

(...)\TrackerApp\Resources\bdtsdata\LBF\vfadata\

(...)\TrackerApp\Resources\bdtsdata\NN\

Config file settings:

...

au_fitting_model candide3.wfm

au_fitting_fdp candide3.fdp

bdts_data_path bdtsdata

...

Tracker initialized with:

// assumes that the current working folder is (...)\TrackerApp

tracker = new VisageSDK::VisageTracker("Facial Features Tracker - High .cfg");

Similar folder structures are possible on other operating systems.

2.3. The 3D models used in tracking

As explained in section 2.1., tracker and detector can use up to three different 3D model files for estimating 3D

information by fitting the 3D face model to detected/tracked 2D feature points in the image. The 3D models are written in

a simple, documented text file format so they can be fully configured or custom models can be used for any specific

requirements.

This section briefly describes the default models shipped with visage|SDK and specifies the file formats used to enable

customization.

2.3.1. The Candide model

This model was previously used to evaluate action units and shape units (au_fitting_model in section 2.1.) and estimate

face rotation and translation. This model is no longer used but is kept for legacy purposes. Instead, a more

detailed/accurate model is used – see section 2.3.2 The jk_300 model.

The model is defined in the file candide3.wfm, consists of 157 vertices forming 228 faces. An alternative model,

candide3-ClosedMouth.wfm is available for special purposes, when closed mouth is required.

13

Figure 1. Candide model

14

2.3.2. The jk_300 model

This model is currently used to estimate pose, evaluate actions units and shape units (au_fitting_model in section 2.1.)

and provide fine mesh of the face. The model consists of 357 vertices and 640 triangles.

Figure 2. jk_300 model

15

2.3.2.1. The jk_300_wEars model

This model is based on jk_300 model with additional 334 triangles and 192 vertices and should be used if ears

refinement is enabled (refine_ears section in 2.1).

Figure 3. jk_300_wEars model
(ears are displayed separately for clearer visualization)

16

2.3.3. File formats for 3D models

It is possible to modify this file or to configure the tracker to use a different 3D model file. The 3D model has several

Action Units defined for animating the model, and a number of Shape Units for deforming the initial model shape.

The 3D models are written in plain text wfm file format, specified as follows (lines beginning with # are comments):

VERTEX LIST:
[vertex count]
[x y z] (vertex coordinates)
…
[x y z] (vertex coordinates)

TEXCOORD LIST:
[texcoord count]

[u v] (normalized texture coordinates)

…

[u v] (normalized texture coordinates)

FACE LIST:
[face count]
[i1 i2 i3] (vertex indices making a face)
…
[i1 i2 i3] (vertex indices making a face)

ANIMATION UNITS LIST:
[action units count]

action unit description
[number of affected vertices]
[vertex_index x_offset y_offset z_offset]
…
[vertex_index x_offset y_offset z_offset]

…

action unit description
[number of affected vertices]
[vertex_index x_offset y_offset z_offset]
…
[vertex_index x_offset y_offset z_offset]

SHAPE UNITS LIST:
[shape units count]

shape unit description
[number of affected vertices]
[vertex_index x_offset y_offset z_offset]
…
[vertex_index x_offset y_offset z_offset]

…

shape unit description
[number of affected vertices]
[vertex_index x_offset y_offset z_offset]
…
[vertex_index x_offset y_offset z_offset]

END OF FILE

Related to the 3D model file is the FDP file. This simple file contains the correspondences between the standard MPEG-

4 Facial Feature Points with some non-standard extensions and the vertices of the face model. For details regarding the

MPEG-4 Feature Points, including a schematic view of all feature point numbers, see the MPEG-4 Face and Body

Animation Introduction document, available in visage|SDK package.

The FDP file format consists of one line of text for each feature point, in the following format:

17

<group>.<index><x><y><z><mesh_index>.<vertex_index>.

The information used by the tracker is the MPEG-4 group and index, and the corresponding vertex index - the index of

the feature point’s vertex in the 3D model.

2.4. Action Units

The action units returned by the tracker, and referred to in the configuration parameters documentation, are defined in

the 3D face model file (see previous section). Action Units can be modified by the user by editing or replacing the 3D

face model file specified by the au_fitting_model configuration parameter.

Furthermore, the tracker configuration file defines the names for action units (see au_names parameter). These names

are returned as tracking results together with action unit values - see documentation of VisageSDK::FaceData structure

for further details. The actual actions units used in the standard configurations are shown in Table 4.

Possible use of action units includes facial animation, or facial analysis; for example, it would be possible to define FACS

action units in order to obtain automatic FACS scoring.

Table 4. Actions units used by standard configurations

Action Units

AU1: Nose wrinkler

AU2: Jaw z-push

AU3: Jaw x-push

AU4: Jaw drop

AU5: Lower lip drop

AU6: Upper lip raiser (AU10)

AU7: Lip stretcher left (AU20)

AU8: Lip corner depressor (AU13/15)

AU9: Lip presser (AU23/24)

AU10: Left outer brow raiser

AU11: Left inner brows raiser

AU12: Left brow lowerer

AU13: Left eye closed (AU42/43/44/45)

AU14: Lid tightener (AU7) (NOT ACTIVE)

AU15: Upper lid raiser (AU5) (NOT

ACTIVE)

AU16: Rotate eyes left (NOT ACTIVE)

AU17: Rotate eyes down (NOT ACTIVE)

AU18: Lower lip x-push

AU19: Lip stretcher right

AU20: Right outer brow raiser

AU21: Right inner brow raiser

AU22: Right brow lowerer

AU23: Right eye closed

